The Chilean Coastal Orographic Precipitation Experiment: Observing the Influence of Microphysical Rain Regimes on Coastal Orographic Precipitation


Abstract The Chilean Coastal Orographic Precipitation Experiment (CCOPE) was conducted during the austral winter of 2015 (May–August) in the Nahuelbuta Mountains (peak elevation 1.3 km MSL) of southern Chile (38°S). CCOPE used soundings, two profiling Micro Rain Radars, a Parsivel disdrometer, and a rain gauge network to characterize warm and ice-initiated rain regimes and explore their consequences for orographic precipitation. Thirty-three percent of foothill rainfall fell during warm rain periods, while 50% of rainfall fell during ice-initiated periods. Warm rain drop size distributions were characterized by many more and relatively smaller drops than ice-initiated drop size distributions. Both the portion and properties of warm and ice-initiated rainfall compare favorably with observations of coastal mountain rainfall at a similar latitude in California. Orographic enhancement is consistently strong for rain of both types, suggesting that seeding from ice aloft is not a requisite for large orographic enhancement. While the data suggest that orographic enhancement may be greater during warm rain regimes, the difference in orographic enhancement between regimes is not significant. Sounding launches indicate that differences in orographic enhancement are not easily explainable by differences in low-level moisture flux or nondimensional mountain height between the regimes.